crewAI
- Very easy and fast way to create AI agents.
- You can create multiple agents in one project.
- You can give it memory - but if you might need vector DB to store the memory, and embedding model to create the vector. Check here for more details. ```python from crewai import Crew, Agent, Task, Process
short term
my_crew = Crew( agents=[…], tasks=[…], process=Process.sequential, memory=True, verbose=True )
from crewai import Crew, Agent, Task, Process
Assemble your crew with memory capabilities
my_crew = Crew( agents=[…], tasks=[…], process=”Process.sequential”, memory=True, long_term_memory=EnhanceLongTermMemory( storage=LTMSQLiteStorage( db_path=”/my_data_dir/my_crew1/long_term_memory_storage.db” ) ), short_term_memory=EnhanceShortTermMemory( storage=CustomRAGStorage( crew_name=”my_crew”, storage_type=”short_term”, data_dir=”//my_data_dir”, model=embedder[“model”], dimension=embedder[“dimension”], ), ), entity_memory=EnhanceEntityMemory( storage=CustomRAGStorage( crew_name=”my_crew”, storage_type=”entities”, data_dir=”//my_data_dir”, model=embedder[“model”], dimension=embedder[“dimension”], ), ), verbose=True, )
```sh
# 1. Make virtual env - and start
virtualenv venv
sourch venv/bin/activate
# 2. get crew AI
pip install crewai
pip install 'crewai[tools]'
# 3. create demo
crewai create crew demo
# 4. rust is necessary:
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
# 4.1 check rust
rustc --version
# 5. other dependancy install
# crewai install only works with python up to 3.12 at the moment.
# You can use pyenv to get the different python version per project
crewai install
# 6. Run
crewai run
Some context:
- By using
process=Process.sequential
, it automatically passes the previous task result to the next task. This can be configured differently, to only send require parameters. The sequence is set bytasks.yml